DafNla		
Ref No:		

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2018-19

Program:	B E – Computer Science & Engineering
Semester:	4
Course Code:	18CS45
Course Title:	SOFTWARE ENGINEERING
Credit / L-T-P:	4/4-0-0
Total Contact Hours:	50
Course Plan Author:	CHANDANA L S

Academic Evaluation and Monitoring Cell

No.29. Chimany Hills, Hesaragatta Road, Chikkabanavara

Bangalore – 560090, KARNATAKA, INDIA

Phone / Fax:+91-08023721315/23721477

www.skit.org.in

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
Safety-Critical Systems	6
Business oriented systems	
Service Oriented Architectures	
Manufacturing industries	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	_
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	1C
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module - 2	
Context models	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	-
D2. TEACHING PLAN - 2	14
Module - 3	'
Business oriented systems	
Module - 4	
Manufacturing industries	_
E2. CIA EXAM – 2	
a. Model Question Paper - 2	15
b. Assignment – 2	_
D3. TEACHING PLAN - 3	16
Module - 5	
E3. CIA EXAM – 3	17
a. Model Question Paper - 3	17
b. Assignment – 3	
F. EXAM PREPARATION	18
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note: Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	CS
Year / Semester :	2 nd /IV	Academic Year:	2018-19
Course Title:	Software Engineering	Course Code:	18CS45
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	CHANDANA L S	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : 60%	SEE Target:	60 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2

concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng Hours	Concepts	Learning Levels
1	Software Crisis, Need for Software Engineering. Professional Software Development, Software Engineering Ethics. Case Studies. Models: Waterfall Model , Incremental Model and Spiral Model . Process activities.	5	-Software lifecycle	L4 Analyze
	Requirements Engineering Processes Requirements Elicitation and Analysis Functional and non-functional requirements The software Requirements Document Requirements Specification Requirements validation Requirements Management		-Software Requirement Specifications	L3 Apply
2	Context models . Interaction models Structural models . Behavioral models . Model-driven engineering.	5	-System Models	L3 Apply
	Introduction to RUP, Design Principles. Object-oriented design using the UML. Design patterns. Implementation issues. Open source development.		-Software Design and implementation	L4 Analyze
3	Development testing, Test-driven development , Release testing , User testing. Test Automation.	5	-Software Testing	L3 Apply
	Evolution processes . Program evolution dynamics. Software maintenance. Legacy system management	5	-Software evolution	L4 Analyze
4	Software pricing . Plan-driven development. Project scheduling: Estimation techniques .	5	-Software plan	L4 Analyze
	Software quality. Reviews and inspections. Software measurement and metrics. Software standards.	5	-Quality management	L2 Understand
5	Coping with Change , The Agile Manifesto: Values and Principles.	5	-Agile project management	L2 Understand
	SCRUM and Extreme Programming. Plan-driven and agile development . Agile project management , Scaling agile methods		-SCRUM	L2 Understand
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used; Free / open source
- 3. Research: Recent developments on the concepts publications in journals; conferences etc.

	arch: Recent developments on the concepts – publications in journals; co		
Modul es	Details	Chapters in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	lan Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012.	1,2,3,4, 5, 7, 8, 9, 23, 24	In Lib / In Dep
В	Reference books (Title, Authors, Edition, Publisher, Year.)	_	
	Roger S. Pressman: Software Engineering-A Practitioners approach, 7th	_	 In Lib
5	Edition, Tata McGraw Hill.		
	Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India	1,2,3,4, 5, 7, 8	In Lib
С	Concept Videos or Simulation for Understanding	_	_
C1	Software life cycle https://www.youtube.com/watch?v=G-6qDY8UltU https://www.youtube.com/watch?v=DRDD7UWX2y4		
	Software Requirement Specifications https://www.youtube.com/watch?v=_XTQjKhh6hQ		
	System Models https://www.youtube.com/watch?v=8kjV8ehDU		
	Software Design and Implementation https://www.youtube.com/watch?v=567ZkNUJ5Is		
C5	https://www.youtube.com/watch?v=Fv6i4ja2O6w Software Testing https://www.youtube.com/watch?v=kpT95Jb3t3U		
C6	Software Evaluation https://www.youtube.com/watch?v=A4aeXIRqJ_Y		
C7	Software Plan https://www.youtube.com/watch?v=KoZmFEhE6-8		
C8	Quality Management https://www.youtube.com/watch?v=18cN8MZvJRA		
	Agile Project Management https://www.youtube.com/watch?v=lP8vjBrswSs		
	SCRUM https://www.youtube.com/watch?v=IKqMYcl6zeM		
D	Software Tools for Design		
E	Recent Developments for Research	-	_
	Future trends in software engineering for mobile apps - https://ieeexplore.ieee.org/document/7476770		
_			
	Others (Web, Video, Simulation, Notes etc.)	-	-
	Software development life cycle phases https://www.softwaretestinghelp.com/software-development-life- cycle-sdlc/		
2	Software-automation testing https://smartbear.com/learn/automated-testing/what-is-automated-		

1		
1	tocting /	
1	18511107	
1		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod		Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	18CS45	Software	Software/ Knowledge of Software	4	Have used different	Understa
		Engineering			software in	nd L2
					laboratory	
2	18CS45	Software	No per-requisite to be considered	4	-	-
		Engineering	as basics shall be taught as			
			curriculum			
3	18CS45	Software	No per-requisite to be considered	4	-	-
		Engineering	as basics shall be taught as			
			curriculum			
4	18CS45	Software	No per-requisite to be considered	4	-	-
		Engineering	as basics shall be taught as			
			curriculum			
5	18CS45	Software	No per-requisite to be considered	4	_	_
		Engineering	as basics shall be taught as			
			curriculum			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	R	emarks		Blooms
ules	'					Level
1	Management Classical analysis		Required for Entrepreneurs	_	Education,	L4
2	Design Heuristic	Software design	Industry requirements	&	profession	L4
3	Testing control structure , black box and white box testing	Software testing	Industry requirements	&	profession	L4
4	LOC estimation	Software quality analysis	Entrepreneurs	hip		L4
5	Agile development tools		Industry requirements	&	profession	L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts

per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18CS45.1	Explore the various types of	5	Software	Lecture	Slip test	L4
		software system		lifecycle			Analyze
	18CS45.2	Identify the software development	5	Software	Explanat	Q & A	L3
		requirements		Requireme	ion		Apply
				nt			

				Specificatio ns			
2	18CS45.3	Interpret the usage of suitable software models	5	System Models	Descripti on	Q & A	L3 Apply
	18CS45.4	Compare various design techniques for software development.	5	Software Design and implement ation	Explanat ion	Q&A	L4 Analyze
3	18CS45.5	Illustrate the principles for validating the software requirements .	5	Software Testing		Focused on analyzing /compar e	L3 Apply
	18CS45.6	Examine the change requirements for software maintenance.	5	Software evolution	Descripti on	Q & A	L4 Analyze
4	18CS45.7	Analyze the software project management plans	5	Software plan	Explanat ion	Slip test	L4 Analyze
	18CS45.8	Identify the quality assurance procedures	5	Quality manageme nt	Descripti on	Q&A	L2 Understand
5	18CS45.9	Understand the importance of agile project management	5	Agile project manageme nt	Develop	Q & A	L2 Understand
	18CS45.10	Explain the Agile method for Software Development .	5	SCRUM	Descripti on	Q & A	L2 Understand
-	-	Total	50	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

0000	stadents should be able to employ 7 apply the coarse tearnings to						
Mod	Application Area	CO	Level				
ules	Compiled from Module Applications.						
1	Software development industries	CO1	L4				
1	Medicine manufacturing industries	CO2	L3				
2	Embedded Systems	CO3	L3				
2	Real-Time Systems	CO4	L4				
3	Safety-Critical Systems	CO ₅	L3				
3	Business oriented systems	CO6	L4				
4	Service Oriented Architectures	CO7	L4				
4	Manufacturing industries	CO8	L2				
5	Agile software development	CO9	L2				
5	Software industries using agile methods	CO10	L2				

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability

required to accomplish it.

			inpusirie.							
Mod	Мар	ping	Mapping	Justification for each CO-PO pair						
ules	es Level		Level		el					
-	СО	РО	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	CO1	PO1	2.35	Knowledge of software processes and requirement engineering is	L4					
				required for complex software development problems						
1	CO1	PO2	2.35	Knowledge of requirement analysis is required in development process	L4					
1	CO1	PO3	2.35	To design a solution to complex software development process	L4					
				knowledge of software processes is required						

1	CO1	PO ₄	2.3	Investigation of different software processes is required to provide solution to the complex engineering problems	L4
1	CO1	PO6	2.25	Knowledge of societal and safety issues should be considered for professional engineering practice	L4
1	CO ₁	PO7	1.5	Understanding the professional ethics is required to develop a software	L4
1	C01	PO12	2.35	Identifying the constraints and requirements for a software development	L4
1	CO2	PO1	2.35	is a life long learning process. Knowledge of requirement engineering is required for complex software	L3
				development problems	
1	CO2		2.35	Knowledge of requirement analysis is required in development process	L3
1	CO2		2.35	To design a solution to complex software development process knowledge of Requirement engineering is required	L3
1	CO2	PO4	2.3	Investigation of different types of requirements is required to provide solution to the complex engineering problems	L3
1	CO2	PO6	2.25	Knowledge of societal and safety issues should be considered for professional engineering practice.	L3
1	CO2	PO7	1.5	Understanding the professional ethics is required to develop a software.	L3
1	CO2	PO12	2.35	Identifying the constraints and requirements for a software development is a life long learning process.	L3
2	CO3	PO1	2.35	Knowledge of system models is required in design and implementation of software development process	L3
2	CO3	PO2	2.35	Analyzing the suitable model for software development process requires knowledge of system models	L3
2	CO3	PO3	2.35	To design a solution to complex software development process knowledge of software design and implementation techniques is required	L3
2	CO3	PO4	2.3	Knowledge of different system models is required to analyze a system design	L3
2	CO3	PO9	1.5	Knowledge of software development is required to function effectively as an individual or leader or team to arrive a particular design	L3
2	CO4	PO12	2.35	Identifying the constraints and requirements for a software development is a life long learning process.	L3
2	CO4	PO1	2.35	Knowledge of various design techniques is required for software development process	L4
2	CO4	PO2	2.35	Analyzing the suitable design techniques for software implementation.	L4
2	CO ₄	PO3	2.35	To design a solution to complex software development process knowledge of software design and implementation techniques is required	L4
2	CO ₄	PO ₄	2.3	Knowledge of different system design is required to analyze a system implementation.	L4
2	CO4	PO9	1.5	Knowledge of software development is required to function effectively as an individual or leader or team to arrive a particular design	L4
2	CO ₄	PO12	2.35	Identifying the constraints and requirements for a software development is a life long learning process.	L3
3	CO5	PO1	2.35	To check the feasibility of software , knowledge of software testing methods is required	L3
3	CO5	PO2	2.35	To test complex software for their functionality , knowledge of testing techniques is required	L3
3	CO ₅	PO3	2.35	To design any software it requires knowledge of various levels of testing.	L3
3	CO ₅		2.35	Identifying the design refinements for a software development is a life long learning process.	L3
3	CO6	PO1	2.35	To check the possible changes of software , knowledge of software evolution methods is required	L4
3	CO6	PO2	2.35	For software maintenance knowledge of evolution techniques is required	L4
3	CO6		2.35	To design any required changes to a software requires knowledge of evolution techniques.	L4
3	CO6	PO12	2.35	Identifying the design refinements for a software development is a life long learning process.	L4
4	CO7	PO1	2.35	Knowledge of software planning is required to give solution to complex	L4
		1			

				coffware engineering problems	
<u> </u>	007	DOs		software engineering problems	1.4
4	CO7	PO2	2.35	Analyzing the factors of project planning is required to develop solution to complex software requirement.	L4
4	CO7	PO3	2.35	To design a solution for complex engineering problems using software requires knowledge of project planning.	L4
4	CO7	PO4	2.3	Research based knowledge is required to assure the correctness of plan for software development	L4
4	CO7	P06	2.25	Societal and legal issue knowledge is required to provide quality assurance for a software development	L4
4	CO7	PO12	2.35	Identifying the constraints and requirements for a software development is a life long learning process.	L4
4	CO8	PO1	2.35	Knowledge of quality assurance is required to give solution to complex software engineering problems	L4
4	CO8	PO2	2.35	Analyzing the factors of project planning is required to develop a software	L2
4	CO8	PO ₃	2.35	To design a solution for complex engineering problems requires knowledge of project planning	L2
4	CO8	PO4	2.3	Research based knowledge is required to assure the quality of a software development	L2
4	CO8	PO6	2.25	Societal and legal issue knowledge is required to provide quality assurance for a software development	L2
4	CO8	PO12	2.35	Identifying the constraints and requirements for a software development is a life long learning process.	L2
5	CO9	PO1	2.35	The software's which demand higher flexibility in development requires knowledge of agile development	L2
5	CO9	PO2	2.35	Complex software's requiring iterative and incremental development requires analysis of change implementation using agile development	L2
5	CO9	PO3	2.35	To design and develop complex software requires knowledge of agile development process.	L2
5	CO9	PO ₄	2.3	Investigation of different agile software development processes requires knowledge of coping with change in agile environment.	L2
5	CO9	P06	2.25	Knowledge of societal, safety should be applied for software development	L2
5	CO9	PO8	1	Knowledge of ethical principles is required for software development	L2
5	CO9	PO12	2.35	Knowledge of software development is identified for life long learning process.	L2
5	CO10	PO1	2.35	The software which demand higher flexibility in development requires knowledge of agile method	L2
5	CO10	PO2	2.35	Complex software's requiring iterative and incremental development requires analysis of agile methods	L2
5	CO10	PO3	2.35	To design and develop complex software requires knowledge of agile methods like SCRUM	L2
5	CO10	PO4	2.3	Investigation of different agile software development processes requires knowledge of agile methods	L2
5	CO10	PO6	2.25	Knowledge of societal , safety should be applied for software development	L2
5	CO10	PO8	1	Knowledge of ethical principles is required for software development	L2
5		PO12	2.35	Knowledge of software development is identified for life long learning process	L2

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

~~		g with mapping to vot for each ec		PG	, •		000	A1 00	ω.,	о. a,	9 $^{\circ}$ $^{\circ}$	acca			٠.			
-	-	Course Outcomes		Program Outcomes										-				
Mod	CO.#	At the end of the course	РО	РО	РО	РО	РО	POF	20	PO	РΟ	РΟ	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	el
1	18CS45.1	Explore the various types of	2.3	2.3	2.3	2.3	-	2.2	1.5	-	-	-	-	2.3				L4
		software system	5	5	5			5						5	.	.		Ana
															.	.		lyze

	18CS45.2	Identify the softwar	.0.2.	122	2.2	2.2		2.2	1 -					2.2			1.0
1	100345.2	,	- 1			2.3	-	2.2	1.5	_	_	_	-	2.3			L3
		development requirements	5	5	5			5						5			App
	100 150	letworket the cooperate of cuitals			2.0	20		_			4 -			0.0			ly
2	18S45.3	Intrepret the usage of suitab		- 1		2.3	-	-	-	-	1.5	-	-	2.3			L3
		software models	5	5	5									5			App
																	ly
	.000			-		ļ.,								-			
2	18CS45.4	Compare various desig		- 1		2.3	-	-	-	-	1.5	-	-	2.3			L4
		techniques for softwar	'e 5	5	5									5			Ana
		development.															lyze
3	18CS45.5	Illustrate the principles for				-	-	-	-	-	-	-	-	2.3			L3
		validating the softwar	e 5	5	5									5			App
		requirements .															ly
3	18CS45.6	Examine the change			2.3	-	-	-	-	-	-	-	-	2.3			L4
		requirements for softwar	'e 5	5	5									5			Ana
		maintenance .															lyze
4	18CS45.7	Analyze the software project	ct 2.3	3 2.3	2.3	2.3	-	2.2	-	-	-	-	-	2.3			L4
		management plans	5	5	5			5						5			Ana
																	lyze
4	18CS45.8	Identify the quality assurance	e 2.3	3 2.3	2.3	2.3	-	2.2	-	-	-	-	-	2.3			L2
		procedures	5	5	5			5						5			Und
																	erst
																	and
5	18CS45.9	Understand the importance	of 2.3	3 2.3	2.3	2.3	-	2.2	-	1	-	-	-	2.3			L2
		agile project management	5	5	5			5						5			Und
																	erst
																	and
5	18CS45.10	Explain the Agile method for	or 2.3	3 2.3	2.3	2.3	-	2.2	-	1	-	-	-	2.3			L2
		Software Development .	5		5			5						5			Und
		·		-	-			_									erst
																	and
-	18CS45	Average attainment (1, 2, or 3)	2.3	3 2.3	2.3	2.3	0	2.2	1.5	1	1.5	0	0	2.3			-
			5		5			5	_		-			5			
_	PO, PSO	1.Engineering Knowledge; 2.Pro				vsis:	3.1		ign		De	velc	pn	ient	of	Solu	tions:
		4.Conduct Investigations of Com															
		Society; 7.Environment and															
		10.Communication; 11.Project															ning;
		S1.Software Engineering; S2.Data													J		'رق
				<i>-</i>		901		, .,	J •			9.1					

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Topics & contents not covered (norm 7.4), but essential for the course to address 1 os and 1 s												
Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping							
ules												
1	Software debugging	Extra class	2 nd week of May	Concerned faculty	L4							
			2019									
2	Software Engineering	Extra class	2 nd week of May	Concerned faculty	L2							
	economics		2019									
3	Computing foundations	Extra class	3rd week of May	Concerned faculty	L2							
			2019									
4	Relational databases	Extra class	3rd week of May	Concerned faculty	L4							
			2019									
			4 ^{th 3rd} week of May									
			2019									

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher

Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions Planned	Schedule	Resources	PO Mapping
ules				Planned	Person	
1	Requirement	Software	Seminar	2 nd week of May	Concerned	L4
	analysis for small-	developme		2019	faculty	
	scale industry	nt				
2	Designing models	Software	Seminar	2 nd week of May	Concerned	L4
	for software	design		2019	faculty	
3	Automation testing	Software	Seminar	3rd week of May	Concerned	L4
		testing		2019	faculty	
4	software quality	Quality	Seminar	3rd week of May	Concerned	L4
	acceptance	Manageme		2019	faculty	
		nt				
5	Implementation of	Software	Seminar	4 ^{th 3rd} week of		L2
	agile method	developme		May 2019		
		nt				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for

each student. 1 Assignment per chapter per student. 1 seminar per test per student.

	Stadent: 17 (33)grillent per enapter								CO	
Mod		Teach.		No. of question in Exam						Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction and software process	10	2	-	-		1	2	CO1,	4
	·								CO2	
2	Systems models and	10	2	-	-	1		2	CO3,	4
	implementation								CO4	
3	System testing and system	10	-	2	-		1	2	CO5,	4
	evolution								CO6	
4	Project planning and quality	10	-	2	-	1		2	CO7,	4
	management								CO8	
5	Agile software development	10	-	-	4	1		2	CO9,	2
									CO10	
-	Total	50	4	4	4	3	2	10	-	_

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1 , CO2,CO3 , CO4	L4, L3 , L3 , L4
3, 4	CIA Exam – 2	30	CO5, CO6,CO7,CO8	L3 , L4 , L4, L2
5	CIA Exam – 3	30	CO9,CO10	L2 , L2
1, 2	Assignment - 1	10	CO1 , CO2,CO3 , CO4	L4, L3 , L3 , L4
3, 4	Assignment - 2	10	CO ₅ , CO ₆ ,CO ₇ ,CO ₈	L3 , L4 , L4, L2
5	Assignment - 3	10	CO9,CO10	L2, L2
1, 2	Seminar - 1	00	-	-
3, 4	Seminar - 2	00	-	-
5	Seminar - 3	00	-	-
	Other Activities – define – Slip test	-	-	-

	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	-	-
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction and software process	Appr	10 Hrs
	·	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Explore the various types of software system	CO1	L4
2	Identify the software development requirements	CO2	L3
b	Course Schedule		_
	Module Content Covered	СО	Level
1	Introduction: Software Crisis, Need for Software Engineering	C01	L4
2	Professional Software Development	C01	L4
3	Case Studies , Software Engineering Ethics	C01	L4
4	Models: Waterfall Model	C01	L4
5	Incremental Model , Spiral Model	C01	L4
6	Process activities.	C01	L4
7	Requirements Engineering Processes , Requirements Elicitation and Analysis	CO2	L3
8	Functional and non-functional requirements	CO2	L3
9	The software Requirements Document, Requirements Specification	CO2	L3
10	Requirements validation .Requirements Management	CO2	L3
	, , , , , , , , , , , , , , , , , , ,		
С	Application Areas	СО	Level
1	Software development industries	CO1	L4
2	Medicine manufacturing industries	CO2	L3
d	Review Questions	-	-
1	Explain requirement validation.	CO2	L3
2	Write short notes on Ethnography	CO2	L2
3	Distinguish between functional and non-functional requirements. With a block diagram	CO2	L2
4	Explain non-functional requirement types and Explain the metrics for specifying non-functional requirements	CO2	L2
5	What are professional and ethical responsibility of software engineering	CO1	L4
6 E	Define software Engineering. Explain the different types of software products	CO1	L4
7	What is a software process model	CO1	L4
8	What are key challenges facing software engineering	CO1	L4
е	Experiences	_	_
1			
2			
3			
4			
5			

Module - 2

Title:	Systems models and implementation	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms

-	The student should be able to:	-	Level
1	Intrepret the usage of suitable software models	CO3	L3
2	Compare various design techniques for software development.	CO4	L4
b	Course schedule	-	-
Class N	o Module Content Covered	СО	Level
1	Context models	CO3	L3
2	Interaction models	CO3	L3
3	Structural models	CO3	L3
4	Behavioral models . Model-driven engineering.	CO3	L3
5	Introduction to RUP	CO4	L4
6	Design Principles. Object-oriented design using the UML	CO4	L4
7	Design patterns	CO4	L4
8	Implementation issues	CO4	L4
9	Configuration Management	CO4	L4
10	Open source development.	CO4	L4
С	Application Areas	СО	Level
1	Embedded and Real-Time Systems	CO3	L3
2	Real-Time Systems	CO4	L4
d	Review Questions	-	-
1	Write short notes on	CO3	L3
	(I) Context models		
	(ii) Structural models		
2	Explain the terms:	CO3	L3
	(I) Unified Modeling language (ii) Sequence models		
	Describe rational unified process with a block diagram	CO4	L3
3 4	List and explain different types of system	CO4	L3
5	What is a sequence model? Write the sequence model of operations in	CO3	L3
	collecting the data from a weather station and explain	003	
6	Define object model and explain object aggregation.	CO3	L3
7	List the proposals made about how to identify object classes.	CO4	L4
8	With figure explain the phases of RUP.	CO4	L4
е	Experiences		_
1	- Charles		
2			
3			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs (Code 17cs45 Sem: 4 Marks: 30 Time: 75 minutes				S					
Cour	'se:	Software e	ngineering							
-	-	Note: Answ	er any 2 qu	estions, eac	ch carry equ	ial marks. M	lodule : 1, 2	Marks	СО	Level
1	1		a neat diagram , explain the waterfall model of software 10 CO1 L4							
	ı	What is a system requ	requiremen uirements	ng 5	CO2	L3				
					OR					
2		With an requiremen	•	explain the	e function	al and no	on- functio	nal 10	CO2	L3
							oment mode l developme		CO1	L4

3	а	Explain briefly different types of system models that might be created	10	CO3	L3
		during the system analysis phase			
	b	With a neat diagram , explain the rational unified process	5	CO4	L4
		OR			
4	а	Draw a context model for patient information system . How the	5	CO3	L3
		interactions are modeled?			
	b	Explain use case model for weather station	5	CO3	L3
	С	Explain in detail the object identification process	5	CO4	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Note:	A dis	tinct assi	gnment to be							
C C		47	C		lel Assignme			22 122		
Crs C		17CS45	Sem:	4	Marks:	10		90 – 120	minute	S
Cours			e engineering			Module		l .		
			to answer 2-				t carries equal m		60	Laval
SNo	'	USN	\V/leat ava tlea		signment De	•		Marks	CO	Level
1							/are engineering?		CO1	L4
2			developmer			wateriati	model of softwa	e 10	CO1	L4
2						tyyo fund	amental types	of 5	CO1	L4
3			software pro		.xptairi trie	two runu	amentat types	5	COI	L4
4					nt specification	n? Expla	in various ways	of 6	CO2	L3
-			writing syste	•		om Explu	iii vanoas ways		002	_3
5						ments fro	m stake holders	is 5	CO2	L3
			a difficult tas							-5
6						g increme	ental developme	nt 6	CO2	L3
			model . St	ate at l	east two b	enefits a	and problems	of		
			incremental							
7					olain the fun	ictional ar	nd non- function	al 10	CO2	L3
			requirement							
8			Explain the		standard	format	for requireme	nt 8	CO2	L3
			documentat		 		211	1	00 -	
9				•	ients engine	ering pro	ocess with a ne	at 10	CO2	L3
10			block diagra		onts olicitation	on and ar	nalysis phase, wi	th 8	CO2	L3
10							difficult phase		CO2	L3
			requirement				difficult pridace	""		
11			Explain requ			<u>′</u>		10	CO2	L3
12			What are the			ftware. Ex		6	CO1	<u></u>
13							tion system . Ho	w 6	CO3	L3
			the interaction				,			
14			Explain brief	ly differer	nt types of sy	/stem mo	dels that might b	e 10	CO3	L3
			created duri	ng the sys	stem analysis	s phase				
15							ified process	6	CO ₄	L4
16			Explain use of					5	CO4	L4
17			Explain in de		•			5	CO3	L3
18							r describing da	ta 8	CO3	L3
			collection in			,			0.5	
19						and expl	ain four essenti	al 6	CO ₄	L4
			elements of			ا مرادم	at		66.	1.
20			Write short r	iote on op	ben source d	evelopme	eril	8	CO ₄	L4
4-			\V/ith a :2.25 t	diaaraa	ovelole the ::	ational	ified process	6	CO 4	1 4
15							ified process	6	CO4	L4
16			Explain use of				0055	5	CO ₄	L4
17			Explain in de					5	CO3	L3
18			praw and 6	explain S	equence dia	agram 10	r describing da	ta 8	CO3	L3

	collection in weather information system			
19	What is design pattern? List and explain four essential	6	CO4	L4
	elements of design pattern			
20	Write short note on open source development	8	CO4	L4

D2. TEACHING PLAN - 2

Module - 3

Title:	System testing and system evolution	Appr	10 Hrs
11001	System testing and system evelution	Time:	10 1 11 0
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Illustrate the principles for validating the software requirements .	CO ₅	L3
2	Examine the change requirements for software maintenance .	CO6	L4
L	Course Cohodula		
b Class No	Course Schedule Module Content Covered	СО	Level
1	Development testing	CO ₅	L3
2	Development testing contnued	CO ₅	L3
3	System Testing Delagas Testing	CO5	L3
4	Release Testing	CO5	L3
5	User testing Test Automation.	CO5	L3
6		CO5	L3
7	Evolution processes and program evolution dynamics	CO6	L4
8	Program evolution dynamics and Software maintenance	CO6	L4
9	Maintenance prediction	CO6	L4
10	Legacy system management	CO6	L4
	A - P- P- A		
С	Application Areas	CO	Level
1	Safety-critical systems	CO5	L3
2	Business oriented systems	CO6	L4
d	Review Questions	-	-
1	Explain interface testing with neat diagram	CO5	L3
2	Explain component testing	CO ₅	L3
3	List classes of interface errors	CO5	L3
4	Define "program evolution dynamics". Describe the Lehman's laws for	CO6	L4
	program evolution dynamics	006	1.4
5	Explain the different types of software maintenance	CO6	L4
6	Explain the software evolution process	CO6	L4
7	Explain the performance testing	CO5	L3
8	Explain general model of testing with the help of a block diagram	CO5	L3
е	Experiences	_	_
1			
2			
3			
4			
5			

Module - 4

Module	-		
Title:	Project planning and Quality Management	Appr	10 Hrs
		Time:	
а	Course Outcomes		Blooms
u	Course Outcomes	_	DIOOIIIS
	The student should be able to:	-	Level

2	Identify the quality assurance procedures	CO8	L2
b	Course Schedule		
	Module Content Covered	СО	Level
1	Introduction to Project Planning and Software pricing	CO7	L4
2	Plan-driven development	CO7	L4
3	Project planning process	CO7	L4
4	Project scheduling	CO7	L4
5	Estimation techniques	CO7	L4
6	COCOMO Model Continued	CO7	L4
7	Software quality	CO8	L2
8	Software standards.	CO8	L2
9	Reviews and inspections	CO8	L2
10	Software measurement and metrics	CO8	L2
С	Application Areas	СО	Level
1	Service oriented architecture	CO7	L4
2	Manufacturing industries	CO8	L2
d	Review Questions	_	_
1	Explain briefly the algorithmic cost modeling and write the difficulties	CO8	L2
2	Explain different section of project plan and define milestones and deliverable.	CO7	L4
3	List and explain various COCOMO2 cost estimation models	CO7	L4
4	Explain the various inspection checklists for software inspection process	CO8	L2
5	Describe the cost estimation techniques with relevant example	CO8	L2
6	Write a note on project duration and staffing	CO7	L4
7	Name the type of metrics used to estimate productivity	CO8	L2
8	What are the factors affecting software pricing?	CO8	L2
е	Experiences		
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code:	17CS45	Sem:	4	Marks:	30	Time:	75	minute	es	
Cour	se:	Software e	ngineering			<u>'</u>					
-	-	Note: Answ	er any 2 qu	estions, eac	h carry eq	ual marks.	Module : 3, 4		Marks	СО	Level
1	а	Explain with	n neat diagr	am the test	driven dev	elopment.	Explain bene	efits	10	CO5	L3
		of test drive	st driven development								
	b	List and exp	and explain LEHMAN'S law related to software evolution							CO6	L4
			OR								
2	а	With a neat	Vith a neat diagram explain acceptance testing process						5	CO5	L3
	b	Explain the	Explain the software engineering process with an illustrative figure						10	CO6	L4
3	а	Describe th	e COCOMO	model of sc	ftware cos	t estimatior	า		10	CO7	L4
	b	With a neat	diagram ex	plain project	t planning p	rocess			5	CO7	L4
	С	Explain the	various insp	ection chec	klist for sof	tware inspe	ection proces	S	5	CO8	L2
					OR	-					
4	а	Explain the features provided by the version management system						5	CO7	L4	
	b	What is o		n managen			ur activities	of	5	CO8	L2
		comiguration	n managen	ierit.							

С	Explain the factors to be considered for the approval of change.	5	CO8	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	ode:	17CS45	Sem:	4	Marks:	10	Time:	90	– 120 r	minutes	5
Cours			e engineering			Modul					
Note:			to answer 2-3	assignmer	nts. Each a	ssignmen	t carries equal n	nark	ζ.		
SNo	Į	JSN			nment De				Marks	CO	Level
1					system	testing ,	unit testing a	and	10	CO5	L3
			component t								
2							ven developme	ent.	10	CO5	L3
			Explain bene								
3							ting process		8	CO5	L3
4			With a neat c						8	CO6	L4
5							oftware evolutio	-	5	CO6	L4
6			figure.				ith an illustrative		10	CO6	L4
7			List and exp assessing ma			matrix tha	at can be used	for	8	CO6	L4
8			Define vali	dation an	d verific		nd explain to cking and analys	wo	10	CO7	L4
			Explain in de					515	6	CO8	L2
9			With a neat o						8	CO7	L4
11							r the approval	of	5	CO8	L2
			change								
12			system	·	•		sion manageme		5	CO8	L2
13			What is confi configuration			t? State t	ne four activities	of	6	CO8	L2
14			What is sys		ng? State	the fea	tures available	in	10	CO8	L2
15			Explain the f system.	actors to b	e conside	red for re	elease planning	of	6	CO7	L4
16				duct metric	s? Explair	its two c	lasses of metrics	s	4	CO8	L2
17							ost estimation		10	CO7	L4
18			With a neat c	liagram exp	lain projed	ct plannin	g process		8	CO7	L4
19				various			list for softwa	are	6	CO8	L2
20			List and expl		e quality a	ttributes			5	CO8	L2

D₃. TEACHING PLAN - 3

Module - 5

Title:	Agile Software Development, Agile Methods	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the importance of agile project management	CO9	L2
2	Explain the Agile method for Software Development .	CO10	L2
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Coping with Change	CO9	L2

2	Incremental Delivery	CO9	L2
3	Plan-driven and agile development	CO9	L2
4	Testing in XP	CO9	L2
5	Pair programming	CO9	L2
6	Agile project management	CO10	L2
7	Scaling Agile Methods	CO10	L2
8	The Agile Manifesto: Values and Principles	CO10	L2
9	The Agile Manifesto: Values and Principles continued	CO10	L2
С	Application Areas	СО	Level
1	Agile software development	CO ₉	L2
2	Software industries using agile methods	CO10	L2
d	Review Questions	-	-
1	What is pair programming? Write its advantages	CO10	L2
2	What is extreme programming? List principles of agile method	CO10	L2
3	Explain extreme programming .	CO10	L2
4	What are agile methods? Describe the principles of agile method.	CO9	L2
5	List and explain the principles of agile methods.	CO9	L2
6	Also explain the problems with agile methods.	CO9	L2
7	Explain the difficulties with iterative development and incremental delivery.	CO9	L2
8	Briefly describe the extreme programming release cycle with a neat diagram.	CO10	L2
е	Experiences	-	-
1			
2			
3			
4			
5			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Cua	ا ماما	170015	Carrai		Marke	00	T:	- L	75 100 100 110		
_		, 10	Sem:	4	Marks:	30	Tim	e: /	75 minute	25	
Cour	se:	Software e	ngineering								
-	-	Note: Answ	er any 2 qu	estions, eac	ch carry e	qual mark	s. Modu	le : 5	Marks	CO	Level
1	а		explain the vith agile me		of agile	methods.	Also e	xplain th	ne 10	CO9	L2
	h	•	le Project Ma							CO10	1.0
	b	Explain Agii	te Project Ma	anagement					5	CO10	L2
					OR						
2	а	Write breifly	y about the	hrow away	prototype	e.			5	CO9	L2
			RUM. Draw			_	n for th	e SCRU	M 10	CO10	L2
		process . M	ention the a	dvantages (of SCRUM	1					
3		Explain the delivery	e difficulties	with iter	ative dev	/elopment	and ir	ncrement	al 5	COg	L2
			ck diagram a the benefits			ess of proto	otype de	velopme	nt 8	CO10	L2
					OR						
4	а	What is ext	reme progra	mming? Lis	st principle	es of agile	method		7	CO10	L2
			ways of co lile methods		_	nd reducti	ion of re	work cos	st. 10	COg	L2

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

Crs C	ode:	17CS45	Sem:	4	Marks:	10	Time:	90 – 120	minutes	5
Cours	se:	Software	e engineering			Module : 5)			
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal r									
SNo	SNo USN Assignment Description							Marks	СО	Level
1			What is pair p	rogrammin	g? Write its	advantage	S	4	CO10	L2
2			What is ext method	reme prog	gramming?	List princ	iples of agi	le 6	CO10	L2
3			List and expl the problems			gile method	ds. Also expla	in 10	CO9	L2
4							of 6	CO9	L2	
5			Draw a block development	_		•	ss of prototyp /pe?	e 8	CO10	L2
6			Write breifly a	about the th	row away p	orototype		5	CO10	L2
7			Explain SCRI SCRUM proce				agram for th CRUM	ne 10	CO10	L2
8			List all the fo	ır key featu	res of testir	ng in XP		2	CO9	L2
9			Explain the incremental c		with ite	rative dev	elopment ar	nd 6	COg	L2
10			With a nea specification		ı explain	plan driv	en and agi	le 10	CO10	L2

F. EXAM PREPARATION

1. University Model Question Paper

		,			
Cours	se:	Software engineering Month 2	/ Year	May /	2019
Crs C	ode:	17cs45 Sem: 4 Marks: 60 Time:		180 m	inutes
_	Note	Answer any FIVE full questions. All questions carry equal marks.	Marks	СО	Level
1	а	What are the fundamental activities of software engineering?	4M	CO1	L4
	b	With a neat diagram , explain the waterfall model of software development process	10	CO1	L4
	С	5	Co1	L4	
	d	What is a requirement specification? Explain various ways of writing system requirements.	6	CO1	L4
		OR			
1	a	Why the understanding of requirements from stake holders is a difficult task? Explain	5	CO2	L3
	b	Write block diagram for illustrating incremental development model State at least two benefits and problems of incremental development model	6	CO2	L3
	С	With an example, explain the functional and non- functional requirement	10	CO2	L3
	d	Explain the IEEE standard format for requirement documentation	8	CO2	L3
2	а	Draw a context model for patient information system . How the interactions are modeled?	6	CO3	L3
	b	Explain breifly different types of system models that might be created during the system analysis phase	10	CO3	L3
	С	With a neat diagram , explain the rational unified process	6	CO3	L3
	d	Explain use case model for weather station	5	CO3	L3
		OR			
2	а	Explain in detail the object identification process	5	CO4	L4
	b	Draw and explain sequence diagram for describing data collection in weather information system		CO ₄	L4
	С	What is design pattern? List and explain four essential elements of design pattern	6	CO ₄	L4
		, , , , , , , , , , , , , , , , , , , 		1	

	d	Write short note on open source development	8	CO ₄	L4
	u	write short note on open source development	0	004	<u> </u>
3	a	Write short notes on system testing , unit testing and component testing	10	CO5	L3
3	a_ b	Explain with neat diagram the test driven development. Explain benefits	10	CO5	<u>L3</u>
	D	of test driven development	10		<u>-</u> 3
	С	With a neat diagram explain acceptance testing process	8	CO5	L3
	d	With a neat diagram explain software evolution process	8	CO5	L3
		OR			
3	а	List and explain LEHMAN'S law related to software evolution	5	CO6	L4
	b	Explain the software engineering process with an illustrative figure	10	CO6	L4
	С	List and explain distinct process matrix that can be used for assessing maintainability	8	CO6	L4
	d	Define validation and verification and explain two complementary approaches to system checking and analysis	10	CO6	L4
		approaches to system checking and anatysis			
4	а	Explain the factors to be considered for the approval of change	5	CO7	L4
	b	Explain the features provided by the version management system	5	CO7	 L4
	С	What is configuration management? State the four activities of configuration management	6	CO8	L2
	d	What is system building? State the features available in system building tools	10	CO7	L4
		OR			
4	а	Explain the factors to be considered for release planning of system	6	CO7	L4
	<u>b</u>	What are product metrics? Explain its two classes of metrics	4	CO8	_ _
	С	Describe the COCOMO model of software cost estimation	10	CO8	
	d	With a neat diagram explain project planning process	8	CO7	
					•
5	а	Explain Ahile Manifesto.	4	CO10	L2
	b	List all the four key features of testing in XP	2	CO9	L2
	С	List and explain the principles of agile methods. Also explain the problems with agile methods	10	CO9	L2
	d	Explain the ways of coping with change and reduction of rework cost. How the agile methods are scaled?	6	CO9	L2
		OR			
5	a	Draw a block diagram and explain the process of prototype development	8	CO10	L2
	ч	? What are the benefits of prototype?			
	b	Write briefly about the throw away prototype	5	CO10	L2
	С	Explain SCRUM. Draw and explain block diagram for the SCRUM process. Mention the advantages of SCRUM	10	CO10	L2
	d	What is extreme programming? List principles of agile method	6	CO10	L2

2. SEE Important Questions

Cours	se:	Software engineering				Month .	/ Year	May /2	2019
Crs C	ode:	17cs45 Sem:	4	Marks:	60	Time:		180 mi	nutes
	Note	Answer any FIVE full que	stions. All q	uestions carry ed	_l ual mar	ks.	-	-	
Mod	Qno.	Qno. Important Question							Year
ule									
1	1	Write block diagram for illustrating incremental development model						CO1	L4
		State at least two benefits and problems of incremental developmen							
		model							
	2	With neat diagram explai	n water fall	model for softwa	are deve	lopment.	10	CO2	L3
	3	Explain the IEEE standard	d format for	requirement doc	umenta	tion	8	CO2	L3
	4	Explain the requirements engineering process with a neat block diagram						CO2	L3
	5	Explain the requiremer	ts elicitation	on and analysis	phase,	with spiral	8	CO2	L3
		diagram. Give reasons	why is	it difficult phas	e in r	equirements			

		engineering process			
2	1	Explain use case model for weather station	5	CO3	L3
	2	Explain in detail the object identification process	5	CO4	L4
	3	Draw and explain sequence diagram for describing data collection in weather information system	8	CO3	L3
	4	What is design pattern? List and explain four essential elements of design pattern	6	CO ₄	L4
	5	Write short note on open source development	8	CO4	L4
3	1	Explain the software engineering process with an illustrative figure	10	CO6	L4
	2	List and explain distinct process matrix that can be used for assessing maintainability	8	CO6	L4
	3	Define validation and verification and explain two complementary approaches to system checking and analysis	10	CO ₅	L3
	4	Explain in detail software inspection process	6	CO6	L4
	5	Explain the test driven development.	8	CO ₅	L3
4	1	What are product metrics? Explain its two classes of metrics	4	CO8	L2
	2	Describe the COCOMO model of softwre cost estimation	10	CO8	L2
	3	With a neat diagram explain project planning process	8	CO7	L4
	4	Explain the various inspection checklist for software inspection process	6	CO8	L2
	5	With a neat diagram explain project planning process.	10	CO7	L4
5	1	Write breifly about the throw away prototype	5	CO10	L2
	2	Explain SCRUM. Draw and explain block diagram for the SCRUM process . Mention the advantages of SCRUM	10	CO10	L2
	3	List all the four key features of testing in XP	2	CO9	L2
	4	Explain the difficulties with iterative development and incremental delivery	6	COg	L2
	5	Explain Agile Manifesto.	10	CO9	L2

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning			on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Leve	Learning		Learning
			Content	l		Learning	
Α	В	С	D	Ε	F	G	Н
1	Software Crisis, Need for Software	5	L4	L4	_	Lecture	Slip test
	Engineering. Professional Software		Analyze	Anal	Understa		
	Development, Software Engineering Ethics.			yze	nd		
	Case Studies.				- Explore		
	Models: Waterfall Model , Incremental Model						
	and Spiral Model . Process activities.						
	Requirements Engineering	_	L3 _.	_	-Identify	Explanat	Q & A
	Processes Requirements Elicitation and		Apply	Appl	_	ion	
	Analysis . Functional and non-functional			У			
	requirements. The software Requirements						
	Document Requirements Specification.						
	Requirements validation .Requirements						
	Management .						
	Context models . Interaction models	5	L3 _.		-Interpret		Q & A
	Structural models . Behavioral models .		Apply	Appl	-	on	

	Model-driven engineering.			У			
2	Introduction to RUP, Design Principles. Object-oriented design using the UML. Design patterns. Implementation issues. Open source development.		L4 Analyze		- Compare -	Explanat ion	Q & A
3	Development testing, Test-driven development , Release testing , User testing. Test Automation.		L3 Apply	L3 Appl y		Examine	Focused on analyzing / compare
3	Evolution processes . Program evolution dynamics. Software maintenance. Legacy system management		L4 Analyze		-Examine -	Descripti on	Q & A
4	Software pricing . Plan-driven development. Project scheduling: Estimation techniques .	5	L4 Analyze	L4 Anal yze	-Analyze -	Explanat ion	Slip test
4	Software quality. Reviews and inspections. Software measurement and metrics. Software standards.		L2 Underst and		-	Descripti on	Q & A
5	Coping with Change , The Agile Manifesto: Values and Principles.	5	L2 Underst and	L2 Und ersta nd	- Understa nd -	Develop	Q & A
5	SCRUM and Extreme Programming. Plan- driven and agile development . Agile project management , Scaling agile methods		L2 Underst and	L2 Und ersta nd	- '	Descripti on	Q & A

2. Concepts and Outcomes:

Table 1: Concept to Outcome - Example Course

Мо			Final Concept			CO Components	Course O	utcome
dul		Concepts		Justifica		(1.Action Verb,		
e-	from study of			(What all L		2.Knowledge,		
#	the Content	Content		Happened		_	Student Sh	
	or Syllabus			study of Co		Methodology,	able t	to
				Syllabus.		4.Benchmark)		
				word for lea	arning or			
				outco	me)			
Α	1	J	K	L		М	N	
1	- Software	_	Software	Software	process	-Explore	Explore the	e various
	Crisis, Need	Software	lifecycle	activities		-software system,	types of	software
	for Software	process				component or process	system	
	Engineering.	_				-system models		
	Professional					-realistic constraints.		
	Software							
	Development							
	, Software							
	Engineering							
	Ethics. Case							
	Studies.							
	Models:							
	Waterfall							
	Model,							
	Incremental							
	Model and							

	T	ı	1		T	
	Spiral Model .					
	Process					
	activities		- c		1.1	
	Requirement s Engineering Processes .Re quirements Elicitation and Analysis . Functional and nonfunctional requirements . The software Requirement s Document .R equirements Specification. Requirement s validation .Re quirements Management .	Requirem ent		,	-Identify -requirements for software development, Requirements Engineering Processes.	Identify the software development requirements
2	Interaction	-Model driven engineeri ng	System Models		-Interpret -Analysis of requirements - appropriate software design	Interpret the usage of suitable software models
	-Introduction	-Design Analysis -	Software Design and implementati on	Design techniques	development	Compare various design techniques for software development.
3	- Development testing, Test-	developm ent	Software Testing	Levels of software testing	-software	Illustrate the principles for validating the software requirements .

	Automation.					
3	-Evolution processes . Program evolution dynamics. Software maintenance. Legacy system management	-Evolution process -	Software evolution	Evolution process	-Examine -Software Maintenance -Change requirement	Examine the change requirements for software maintenance.
	-Software pricing . Plan- driven development. Project scheduling: Estimation techniques	developm		Development panning	management -quality assurance procedures	Analyze the software project management plans
4	-Software quality. Reviews and inspections. Software measuremen t and metrics. Software standards.	-Software quality -	Quality management	Quality assurance procedures	-Identify -Software development process -Quality assurance procedures	Identify the quality assurance procedures
5	Change , The Agile	-Agile project managem ent -	management	Agile methods for software development	-Understand -Software Development -Agile project management	Understand the importance of agile project management
5		method	SCRUM	Agile methods for software development	-Explain,Software development -Agile methods	Explain the Agile method for Software Development .